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Abstract In a literature review on the last 20 years of
automated analysis of feature models, the formalization of
analysis operations was identified as the most relevant chal-
lenge in the field. This formalization could provide very
valuable assets for tool developers such as a precise defini-
tion of the analysis operations and, what is more, a reference
implementation, i.e., a trustworthy, not necessarily efficient
implementation to compare different tools outputs. In this
article, we present the FLAME framework as the result
of facing this challenge. FLAME is a formal framework
that can be used to formally specify not only feature mod-
els, but other variability modeling languages (VMLs) as
well. This reusability is achieved by its two-layered archi-
tecture. The abstract foundation layer is the bottom layer
in which all VML-independent analysis operations and con-
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cepts are specified. On top of the foundation layer, a family
of characteristic model layers—one for each VML to be
formally specified—can be developed by redefining some
abstract types and relations. The verification and validation
of FLAME has followed a process in which formal verifi-
cation has been performed traditionally by manual theorem
proving, but validation has been performed by integrat-
ing our experience on metamorphic testing of variability
analysis tools, something that has shown to be much more
effective than manually designed test cases. To follow this
automated, test-based validation approach, the specification
of FLAME, written in Z, was translated into Prolog and
20,000 random tests were automatically generated and exe-
cuted. Tests results helped to discover some inconsistencies
not only in the formal specification, but also in the previous
informal definitions of the analysis operations and in current
analysis tools. After this process, the Prolog implementa-
tion of FLAME is being used as a reference implementation
for some tool developers, some analysis operations have
been formally specified for the first time with more generic
semantics, and more VMLs are being formally specified
using FLAME.

Keywords Formal specification · Specification testing ·
Software product lines · Feature models

1 Introduction

The variability of a software-intensive system can be defined
as the capability of being tailored or adapted to specific
needs in a specific domain. Software product lines (SPLs)
are commonly used as a way of managing the variabil-
ity of a family of similar software systems in a concrete
domain. In the SPL context, software variability is usually
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documented using variability modeling languages (VMLs),
which describe all the possible configurations of a software
system in terms of (1) composable units or variants, and
(2) constraints indicating how those variants can be prop-
erly combined. At the problem level, variability is modeled
in terms of features or requirements, usually using fea-
ture models (FMs) [39]. On the other hand, at the solution
level, variability is modeled using domain-specific lan-
guages such as Kconfig in Linux [11], p2 in Eclipse [41]
or WS-Agreement in web services [45].

In outline, SPL engineering covers specific processes,
methods, models, techniques and tools for supporting SPL
adoption [19,51]. As an essential support for SPL engineers
during domain analysis, the automated analysis of FMs is
defined in [9] as the computer-aided extraction of infor-
mation from FMs by means of analysis operations, such
as determining the number of products represented by a
model and detecting model anomalies. Manual computation
of such analysis operations is error prone, tedious and even
infeasible with large-scale FMs.

Some of the authors performed a systematic literature
review on the last 20 years of automated analysis of FMs
in which 30 different analysis operations were cataloged
[9]. This review also identified several important challenges
that were not covered by existing research. One of them
was the lack of formal or rigorous descriptions of analy-
sis operations, which has sometimes led researchers and
tool developers to misunderstandings. Notice that a precise
definition of the analysis operations and, what is more, a
reference implementation, i.e., a trustworthy, not necessarily
efficient implementation of the analysis operations to com-
pare different tools outputs, are very valuable assets for tool
developers.

This article, which is mainly focused on problem-level
variability, presents FLAME (FaMa formaL frAMEwork),
a formal framework for specifying the semantics of analy-
sis operations not only on FMs, but also on other VMLs.
FLAME is architectured in two layers. The bottom layer is
the abstract foundation layer (AFL), which includes the def-
initions of necessary abstract concepts that can or must be
redefined in the second layer, and also 20 VML-independent
analysis operations. On top on the AFL, a family of char-
acteristic model layers (CMLs)—one for each VML to

Fig. 1 FLAME architecture: relation between layers

be formally specified—can be developed by redefining the
aforementioned abstract concepts (see Fig. 1). In this article,
a CML specifying the semantics of an eclectic FM dialect
known as basic feature model (BFM) [9] is presented,
although other VMLs such as OVM [51] or CUDF [69],
which is used for package-based Linux distributions, can
also be specified (see Appendices 1 and 2 for an overview).

During the development of FLAME, the verification and
validation processes followed an approach in which formal
verification were performed traditionally by manual theo-
rem specification and proving, but validation was performed
by integrating our experience on metamorphic testing of
variability analysis tools [62,64], which has shown to be
much more effective than manually designed test cases, as
described in [61]. To follow this automated, test-based val-
idation approach, the specification of FLAME –developed
in the standard, highly-expressive, well-known Z formal
specification language [37,65]—was translated into Prolog
[20] for testing purposes and 20,000 metamorphic random
tests were automatically generated and executed. Tradi-
tionally, Prolog [20] has been the choice for the testing
of Z specifications, also know as specification animation
[35,73]. In the case of FLAME, animating the Z specifica-
tion in Prolog was very useful for detecting problems and
inconsistencies by the manual execution of a small suite
of tests, which were very helpful during the discussions
among the authors about the semantics of some operations
and provided immediate feedback. On the other hand, the
animation was also systematically tested against 20,000 ran-
dom test cases automatically generated using metamorphic
testing techniques inspired by the previous work of some
of the authors [62,64]. Metamorphic testing [15] exploits
the relations between the inputs and outputs of a program
to generate new follow-up test cases from existing test data
(see Sect. 2.3 for an overview and Sect. 5.1 for details).

After this exhaustive testing, the Prolog animation can be
considered as a high-level reference implementation for tool
developers that is not designed for efficiency but to be easy
to understand and to clarify the semantics of many analy-
sis operations that had not been formally specified before.
The integrated approach—formal and test-based at the same
time—has helped to discover some inconsistencies not only
in the formal specification but also in the previous informal
definitions of the analysis operations in [9] and in current
analysis tools such as the FaMa framework [10,36].

The reminder of the article is structured as follows. Sec-
tion 2 provides the necessary background on FMs, their
automated analysis, and metamorphic testing for those read-
ers not familiar with the topics; Sect. 3 describes the AFL
layer of the FLAME framework, including the theorems
used for the formal verification of the specification; Sect.
4 describes a concrete application of the CML of FLAME
to a specific VML, namely BFM; Sect. 5 describes the test-
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based validation of the specification and their results; Sect. 6
comments the related work; and finally, Sect. 7 presents the
conclusions and the future work.

Four Appendices with supplemental material are avail-
able for the reader. Appendices 1 and 2 contain an overview
of the specification in FLAME of the OVM [51] and CUDF
[69] VMLs, respectively. Appendix 3 contains the proofs
of the theorems included in Sect. 3. Finally, Appendix 4
includes the guidelines applied for the manual translation
of the Z specification into executable Prolog code, and an
example of use of the reference implementation, which can
be downloaded from http://www.isa.us.es/flame.

2 Background

2.1 Feature models

As mentioned in the previous section, FMs are widely used
to describe the set of products in an SPL in terms of their fea-
tures. In these models, features are hierarchically linked in a
tree-like structure and are optionally connected by crosstree
constraints. An example on how FMs are usually depicted
using FODA-like notations [39] is shown in Fig. 2, where
the FM describes an SPL for mobile phones borrowed from
[9].

Although there are many proposals on the type of rela-
tionships and their graphical representation in FMs (see [59]
for a detailed survey), the most usual relationships inspired
in the seminal work by Kang et al. [39] are the following:

– Mandatory: a child feature has a mandatory relationship
with its parent feature when it is required to appear in a
given product whenever its parent feature appears in that
product. In Fig. 2, Calls have a mandatory relationship
with Mobile Phone, i.e., any product in the mobile phone
SPL must have a feature to manage calls.

– Optional: A child feature has an optional relationship
with its parent feature when it can appear or not in a
given product whenever its parent feature appears in that
product. In the example in Fig. 2, GPS has an optional
relationship with Mobile Phone, i.e., the GPS feature can

Only one One or moreOptionalMandatory ExcludesRequires

Mobile Phone

Calls GPS

ColorBasic

Screen Media

Camera MP3High Resolution

Requires

Excludes

Fig. 2 A sample feature model of an SPL for mobile phones using a
FODA-like notation

be optionally chosen in the configuration of a product in
the mobile phone SPL.

– Or-relationship (also known as OneOrMore): A set of
child features has an or-relationship with their parent fea-
ture when one or more child features can be selected
in a given product when the parent feature appears in
that product. In Fig. 2, Camera and MP3 have an or-
relationship with Media, which means that whenever
Media is selected, Camera, MP3, or both must be selected.

– Alternative (also known as OnlyOne): A set of child fea-
tures has an alternative relationship with their parent
feature when only one of them must be selected in a given
product when their parent feature appears in that product.
Features Basic, Color and High Resolution have an alterna-
tive relationship in Fig. 2, where one and only one of them
must be selected whenever Screen is present in a product.

– Requires, Excludes: A crosstree relationship like A requires

B means that in any product where feature A appears, fea-
ture B must also appear. On the other hand, a relationship
like A excludes B means that both features cannot appear
in the same product at the same time. In the example
in Fig. 2, Camera requires High Resolution, whereas GPS

excludes a Basic screen.

2.2 Automated analysis of feature models

As commented in the introductory section, the automated
analysis of FMs deals with the computer-aided extraction
of information from FMs. From the information obtained,
SPL engineers can decide marketing strategies and make
technical decisions. Many different analysis operations on
FMs have been reported in the literature [9] in the last years.
Some of the most referenced are presented below to provide
an overview for those readers not familiar with the topic.

– Finding out if a product is valid. This operation checks
whether an input product (i.e., set of features) belongs to
the set of products represented by a given FM or not. It
may be helpful for SPL engineers and managers to deter-
mine whether a given product is available in an SPL.

– Obtaining all products. This operation takes an FM as
input and returns all the products represented by the
model. It may be helpful to identify new valid require-
ment combinations not considered in the initial scope of
the SPL.

– Calculating the number of products. This operation
returns the number of products represented by an FM,
which provides information about the flexibility and
complexity of an SPL. The number of products is used in
derived operations such as variability, commonality and
homogeneity metrics of an FM (see Sect. 3.5).

– Determining if a FM is void. This operation takes an
FM and determines whether the FM is void or not, i.e.,
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whether it represents no products. The automation of this
operation is especially helpful when debugging large-
scale FMs in which the manual detection of errors is an
error-prone, time-consuming task.

– Detecting dead features. This operation takes an FM as
input and returns the set of dead features included in the
model. A feature is dead if it cannot appear in any of
the products derived from the model. Dead features are
usually caused by a wrong usage of crosstree constraints
and are clearly undesired since they are the result of a
wrong domain modeling.

These operations can be performed automatically using
different approaches. Most translate FMs into specific logic
paradigms such as propositional logic, constraint program-
ming or description logic. Others propose ad hoc algorithms
and solutions to perform these analyses [9]. Finally, these
analysis capabilities can also be found in several commer-
cial and open-source tools such as the AHEAD Tool Suite
[3], the Big Lever Software Gears [12], the FaMa Frame-
work [36], the Feature Model Plug-in [28], pure::variants
[52] and SPLOT [43]. The automated analysis of FMs is
being used in different scenarios such as cloud computing
configurations [31], reverse engineering of feature models
[42], image test case selections [29] or testing of mobile
phone configurations [30].

2.3 Metamorphic testing

In software testing, an oracle is a procedure by which testers
can decide whether the output of a program is correct or not
[74]. In some situations, the oracle is not available or it is too
difficult to apply. For example, consider testing the results
of complicated numerical computations such as the Fourier
transform, or processing non-trivial outputs like the code
generated by a compiler. Furthermore, even when the oracle
is available, the manual prediction and comparison of the
results are in most cases time-consuming and error prone.
Situations like these are referred to as the oracle problem in
the testing literature [80].

Metamorphic testing [15] was proposed as a way to
address the oracle problem by generating new tests from
previously successful test cases. The expected output of the
new test cases can be checked by using so-called meta-
morphic relations, i.e., known relations among two or more
input data and their expected outputs. As a result, the oracle
problem is alleviated and the test data generation process
can be highly automated. For instance, consider a program
that compute the sine function (sin x ). Suppose the program
produces the output 0.207 when run with input x = 12.
A mathematical property of the sine function states that
sin(x ) = sin(x + 360). Using this property as a metamor-
phic relation, a new test case with x = 12 + 360 = 372

could be designed. Assuming that the output of the program
for this input is 0.375, it could be easily concluded that the
program is faulty by comparing both outputs.

Metamorphic testing has been successfully applied to a
number of testing domains including numerical programs
[16], graph theory [17], service-oriented applications [14]
or variability analysis tools [62]. In this article, it is applied
to the automated analysis of FMs (see Sect. 5.1).

3 Abstract foundation layer of the FLAME
framework

The abstract foundation layer (AFL) is the basement on
which the FLAME framework rests. In the AFL, some
abstract concepts and most of the analysis operations des-
cribed in [9] are formally defined. Notice that although those
operations were originally defined over FMs, it has been
possible to remove their dependencies from that VML and
transform most of them into generic SPL analysis opera-
tions.

In the rest of this section, all the concepts and operations
related to SPL analysis from an abstract point of view are
described informally in natural language but also formally
in Z. More specifically, in Sect. 3.1, the basic SPL con-
cepts, their integration in the framework architecture, and
their representation in Z, are discussed. In Sect. 3.2, the
basic SPL analysis operations (product validity, the set of
valid products, void SPL checking, etc.) are specified. In
Sect. 3.3, SPL relations such as equivalence and special-
ization are defined. In Sect. 3.4, feature-related operations
(core features, dead features, etc.) are formalized. Finally, in
Sect. 3.5, some numerical indicators such as commonality,
variability and homogeneity are specified.

The adopted name convention in the formal specification
is that operations related to features use the Greek letter
phi (Φ), those related to products use the Greek letter pi
(Π), and operations yielding numbers use calligraphic let-
ters such as N . When appropriate, some theorems used
during formal verification are included after operation spec-
ifications. Theorem proofs can be found in Appendix 3.

3.1 SPL basic concepts

From an abstract point of view, an SPL can be considered as
composed of two elements: (1) a nonempty set of features
that can be combined to form products; and (2) a character-
istic model which determines which of those combinations
are valid products of the SPL. More formally, a product,
considered as a finite nonempty set of features, is a valid
product of an SPL if: (1) its set of features is a subset of the
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Table 1 Redefinable abstract concepts in the abstract foundation layer
of FLAME

Name Description Redef. in CML

SPL Type and invariant for SPLs Optional

Feature Type for features Optional

Model Type for VML characteristic models Mandatory

≺≺ is-instance-of relation Mandatory

Φ features-in-a-model function Mandatory

Π valid-products function Optional

SPL feature set, i.e., it contains only known features; and (2)
if it is an instance of the characteristic model of the SPL.1

Notice that in order to keep the AFL abstract and there-
fore reusable, nothing is said about the nature of either
features or models, which are open for redefinition in the
CML of FLAME when needed. For example, features could
be redefined to include attributes, whereas characteristic
models and their associated is-instance-of relations must
be redefined in the CML in order to specify the seman-
tics of a concrete VML such as FMs, OVM [51] or CUDF
[69]. The function computing the valid products of an SPL
can also be redefined in the CML, something interesting
when dealing with a big number of features and an efficient
notation-dependent algorithm is known, since the default
specification of the function has an exponential algorithmic
complexity (see Sect. 3.2.2 for details).

A summary of the redefinable abstract concepts defined
in the AFL, indicating whether they must be redefined in the
CML or not, is shown in Table 1. Also, a UML class diagram
representing these concepts from an object-oriented point of
view is shown in Fig. 3, i.e., the AFL can be seen as an
abstract package in which some abstract methods must or
can be overridden in subclasses.

3.1.1 SPL basic concepts in Z

Features, models and products To express the previously
mentioned concepts in Z, the two abstract types Feature
and Model—i.e., given sets in Z terminology (see [65] for
details)—are defined. Then, the Product type is defined as
a finite nonempty set of features.2

1 As defined by Batory [5], this is very similar to the concept of formal
languages. In SPLs, the alphabet is the set of features, the grammar is
the characteristic model, and the language is the set of all products that
are instances of the characteristic model.
2 In Z, PS denotes the powerset of the set S , containing all possible
subsets of S , even the infinite ones. On the other hand, FS denotes the
finite powerset of S , containing finite subsets only. If the empty set is
excluded, the notation becomes P1 and F1. Notice that if S is finite,
PS and FS are the same.

CML

AFL

FeatureModel

is-instance-of(p :Product) : Boolean
features() : Set<Feature>

SPL

invariant() : Boolean
is-valid(p :Product) : Boolean
valid-products() : Set<Product>
N() : Natural
void() : Boolean
full(c :Configuration) : Boolean
partial(c :Configuration) : Boolean
is-valid(c :Configuration) : Boolean
filter(c :Configuration) : Set<Product>
equivalent(spl2 :SPL) : Boolean
specialization(spl2 :SPL) : Boolean
generalization(spl2 :SPL) : Boolean
arbitrary-edit(spl2 :SPL) : Boolean
core() : Set<Feature>
dead() : Set<Feature>
variant() : Set<Feature>
unique() : Set<Feature>
atomic-sets() : Set<Set<Feature>>
configuration-commonality(c :Configuration) : Real
total-variability() : Real
partial-variability() : Real
homogeneity() : Real

Product

Model

is-instance-of(p :Product) : Boolean
features() : Set<Feature>

SPL

invariant() : Boolean
valid-products() : Set<Product>

Feature

features 1..*model 1

1..*model 1 features 1..*

Fig. 3 UML class diagram of the FLAME architecture

[Feature] [Abstract type for features]
[Model ] [Abstract type for characteristic models]

Product==F1Feature [Product type]

Configurations. Another useful concept for SPL automated
analysis, especially during product design, is the so-called
configuration [9], in which the customer can select the
features she wants in the final product, remove undesired
features and leave other features as undecided. Formally, a
configuration defined over a set of features of a given SPL
is a pair of disjoint subsets indicating the features to be
selected and to be removed. This can be defined in Z as fol-
lows:
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Configuration : FFeature × FFeature

selected , removed : Configuration → FFeature

∀c : Configuration •
selected c = first c ∧
removed c = second c ∧
selected c ∩ removed c = ∅

where first and second are standard Z functions to, respec-
tively, access the first and second elements of any pair of
objects in a Cartesian product. Depending on whether some
features are left undecided or not, a configuration is said to
be full or partial with respect to an SPL:

full , partial : Configuration × SPL

∀c : Configuration; spl : SPL •
full( c, spl ) ⇔

(selected c ∪ removed c) = spl .features
∧
partial( c, spl ) ⇔

(selected c ∪ removed c) ⊂ spl .features

For example, a possible partial configuration for the SPL
represented by the FM in Fig. 2 could be ({Mobile Phone,
Calls, Screen, Color, Media, MP3}, {GPS}), indicating that
the selected features are a mobile phone with calls, a color
screen, and able to play MP3 media files, whereas GPS sup-
port is not desired. All other features are left undecided. See
Sects. 3.2.5 and 3.2.6 for analysis operations related to con-
figurations.

Instance of a model. Once the Product and Model types are
defined, the abstract is-instance-of relation between prod-
ucts and models (denoted as ≺≺, a symbol borrowed from
the Object-Z notation [40]) can also be defined as follows:

≺≺ : Product ↔ Model

∀p : Product ; m : Model •
p≺≺m ⇔ [ p is an instance of m ]

[ concrete definition must be provided in the CML ]

where the concrete definition of the relation and the Model
type must be provided in the CML corresponding to the
VML being specified (see Table 1). For example, the prod-
uct {Mobile Phone, Calls, Screen, Basic} is an instance of the

FM in Fig. 2, whereas {Mobile Phone, Calls, Screen, Basic,
GPS} is not because GPS and Basic features exclude each
other.

Features in a model. An abstract function returning the set
of features used in a given characteristic model needs also to
be defined in order to specify the constraint that all the fea-
tures in an SPL must be involved in its characteristic model
and vice versa, i.e., that an SPL cannot contain unbound fea-
tures and that a characteristic model must use all and only
the features in its SPL. This abstract function (denoted as Φ)
is defined as follows:

Φ : Model → FFeature

[ concrete definition must be provided in the CML ]

where the concrete definition, as for the ≺≺ relation, must
also be provided in the CML corresponding to the VML
being specified.

SPL as a type. Finally, using the previous definitions, an
abstract SPL can be formally defined as the following
schema type in Z:

SPL
model : Model [SPL characteristic model]

features : F1Feature [SPL feature set]

Φ model = features

[ other invariants can be added in the CML ]

which is considered as abstract in order to be augmented
with additional invariants on features or models when
used in the CML for the specification of concrete
VMLs.

3.2 SPL basic analysis operations

Once abstract concepts have been defined, a number of
basic operations can be properly specified, following the
naming conventions used in [9]. They are summarized in
Table 2.

3.2.1 Validity of a product

As previously mentioned, a product is valid for an SPL
(denoted as ≺) if it is configured using the SPL features and
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Table 2 SPL basic analysis operations summary

Signature and description Motivation

≺ : Product ↔ SPL Determining whether a
given product is available
in an SPL

Validity of a product with respect
to an SPL

Π : SPL → FProduct Identifying new
requirement combinations
not initially considered

The set of all valid products of an
SPL

N : SPL → N Providing information
about the flexibility and
complexity of an SPL

The number of all valid products
of an SPL

void : PSPL Debugging large-scale
variability modelsVoid, i.e., empty, SPL

≺c : Configuration ↔ SPL Providing feedback during
product designValidity of a configuration with

respect to an SPL

Πσ : SPL × Configuration →
FProduct

Selecting products
according to key
requirementsSPL filtering

is an instance of its characteristic model. This operation may
be helpful for SPL engineers to determine whether a given
product is available in an SPL [9,75]. This can be expressed
in Z as the following relation:

≺ : Product ↔ SPL

∀p : Product ; spl : SPL •
p ≺ spl ⇔

( p ⊆ spl .features ∧ p≺≺spl .model )

For example, consider the product p = {MobilePhone,
Screen, Color, Media, MP3} and the SPL represented by
the FM in Fig. 2. Notice that p is not a valid product of
the SPL because it does not include the mandatory feature
Calls.

3.2.2 The set of all valid products

Using the validity relation (≺), the set of all valid products
of an SPL (denoted as Π), which may be helpful to iden-
tify new valid requirement combinations not considered in
the initial scope of an SPL [9], can be defined in Z as the
following function:

Π : SPL → FProduct

∀spl : SPL •
Π spl = { p : F1spl .features | p ≺ spl }

For example, in the case of the SPL represented by the
FM in Fig. 2, the set of all valid products is shown in Fig. 4.

Notice that the computational complexity of the Π func-
tion as enunciated above is exponential with respect to the
number of features of an SPL3. This is the reason why the
Π function can be redefined in the CML of FLAME when
it can be computed efficiently in a VML-dependent manner.
Nevertheless, this is not a problem for automated testing,
since previous works by some of the authors of this arti-
cle [64] have shown that FMs with 10 features are complex
enough to reveal faults effectively (see Sect. 5 for details).

3.2.3 The number of all valid products

Obviously, the number of valid products of an SPL (denoted
as N ), which provides information about the flexibility and
complexity of the SPL [9], is the cardinality (denoted in Z
as #) of its aforementioned set of products, i.e.:

N : SPL → N

∀spl : SPL •
N spl = #Π spl

In the case of the SPL represented by the FM in Fig. 2,
the number of all valid products is 14 (see Fig. 4).

3.2.4 Void SPL

An SPL is considered to be void if there does not exist any
valid product for it. The automation of this operation is espe-
cially helpful when debugging large-scale feature models in
which the manual detection of errors is recognized to be
an error-prone and time-consuming task [9]. This can be
expressed in Z by means of the following predicate:

void : PSPL

∀spl : SPL •
void spl ⇔ Π spl = ∅

3 The size of the power set of a set S is 2 raised to the power of the
number of elements in S .
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Fig. 4 Valid products of the SPL represented by the feature model in Fig. 2

MM ′

A

CB D

Excludes

A

CB D

Fig. 5 Example of evolution of an SPL represented by a feature
model into a void SPL

As an example, consider the FMs in Fig. 5, in which
the introduction of a excludes constraint between the two
mandatory features B and C in M makes the SPL represented
by M’ void.

Theorem 1 (The number of products of a void SPL is 0)

∀spl : SPL • void spl ⇔ N spl = 0

3.2.5 Validity of a configuration

As pointed out in [9], this operation is useful to provide
feedback on the progress of a product configuration, i.e., an
analysis tool implementing this operation could inform the
user as soon as a configuration becomes invalid, thus saving
time and effort.

Before specifying this operation, it necessary to define an
auxiliary predicate similar to product validity for an SPL,
i.e., a product is said to be valid with respect to a given con-
figuration if all the selected features of the configuration are
present in the product and none of the removed ones are.
This can be specified in Z as follows:

� : Product ↔ Configuration

∀p : Product ; c : Configuration •
p � c ⇔

( selected c ⊆ p ∧ removed c ∩ p = ∅ )

Using the previous definition, a configuration is consid-
ered valid with respect to a given SPL if it is defined using
known features and there exists at least one valid product in

the SPL which is also valid for the given configuration. This
validity concept can be specified as the following predicate:

≺c : Configuration ↔ SPL

∀c : Configuration; spl : SPL •
c ≺c spl ⇔

( selected c ∪ removed c ) ⊆ spl .features

∧ ∃ p : Π spl • p � c

Theorem 2 (There not exists any valid configuration for a
void SPL)

∀spl : SPL •
void spl ⇒ � c : Configuration • c ≺c spl

3.2.6 SPL filtering

A filtering or product selection of an SPL over a given con-
figuration is the set of products of the SPL which are valid
for the given configuration. As commented in [9], this oper-
ation may be helpful to assist users during the configuration
process. Firstly, they can filter the products according to
their key requirements. Then, the list of resultant products
can be inspected to select the desired solution. The specifi-
cation of this operation in Z is as follows:

Πσ : SPL × Configuration → FProduct

∀spl : SPL ; c : Configuration •
Πσ( spl , c ) = { p : Π spl | p � c }

For example, if the set of products in Fig. 4 is filtered
using the partial configuration ({Calls, GPS}, {Color, Cam-

era}), the result is the set of products composed by p5 =
{Mobile Phone, Calls, GPS, Screen, High Resolution} and p12
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Table 3 SPL relations summary

Signature and description Motivation

≡ : SPL ↔ SPL SPL evolution feedback

SPL equivalence, same set of products

� : SPL ↔ SPL Same as above

SPL specialization, product subset

� : SPL ↔ SPL Same as above

SPL generalization, product superset

〈〈〉〉 : SPL ↔ SPL Same as above

SPL arbitrary edit, none of the above

= {Mobile Phone, Calls, GPS, Screen, High Resolution, Media,
MP3}, which are the only two valid products with respect to
the configuration.

Theorem 3 (Any filtering on a void SPL results in an empty
set of products)

∀spl : SPL; c : Configuration •
void spl ⇒ Πσ( spl , c ) = ∅

3.3 SPL relations

As most software engineering artifacts, SPLs evolve dur-
ing their life cycle. In [9], a number of relations between
SPLs that can provide interesting feedback during SPL
evolution are described. They are summarized in
Table 3.

3.3.1 SPL equivalence (refactoring)

An SPL is considered as a refactoring of another SPL if
they both represent the same set of valid products, although
their sets of features and characteristic models, respec-
tively, do not have to be the same. In this case, they are
also said to be equivalent. This can be expressed in Z as
follows:

≡ : SPL ↔ SPL

∀spl1, spl2 : SPL •
spl1 ≡ spl2 ⇔ Π spl1 = Π spl2

For example, the SPLs represented by M and M1 in Fig. 6
are equivalent because their sets of valid products are the
same although their models are different.

Fig. 6 Examples of relationships between SPLs represented by fea-
ture models

Theorem 4 (Any pair of void SPLs are equivalent)

∀spl1, spl2 : SPL •
( void spl1 ∧ void spl2 ) ⇒ spl1 ≡ spl2

3.3.2 SPL generalization/specialization

An SPL is considered as a generalization of another SPL if
its set of valid products is a superset of the products of the
latter SPL. Inversely, an SPL is considered as a specializa-
tion of another SPL if its set of valid products is a subset of
the latter SPL. Both relations can be expressed in Z as the
following:

� : SPL ↔ SPL

� : SPL ↔ SPL

∀spl1, spl2 : SPL •
( spl1 � spl2 ⇔ Π spl1 ⊂ Π spl2 ) ∧
( spl2 � spl1 ⇔ spl1 � spl2 )
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For example, the SPL represented by M2 in Fig. 6 is a
generalization of the SPL represented by M because its set
of valid products is the same as of M plus the {A} and {A,C}
products. On the other hand, the SPL represented by M3 is
an specialization of the SPL represented by M because its
set of products is the same as of M minus the {A,B,C,D}
product.

3.3.3 SPL arbitrary edit

The last SPL evolution relation is the so-called arbitrary
edit, which is the kind of relation between two SPLs when
they are neither equivalent nor a generalization or special-
ization of each other (see [67] for details). This can be
expressed in Z as the following relation:

〈〈〉〉 : SPL ↔ SPL

∀spl1, spl2 : SPL •
spl1 〈〈〉〉 spl2 ⇔

¬ ( spl1 ≡ spl2 ) ∧ [not refactoring]

¬ ( spl1 � spl2 ) ∧ [not specialization]

¬ ( spl1 � spl2 ) [not generalization]

For example, the SPL represented by M4 in Fig. 6 is an
arbitrary edit of the SPL represented by M because their sets
of valid products, although not disjoint, are neither the same
nor a subset of each other.

3.4 SPL feature-related operations

The following operations provide the SPL engineer with
relevant information about the presence or absence of the
features of a given SPL in its set of valid products that can
lead to changes in the corresponding characteristic model.
They are summarized in Table 4.

3.4.1 Core features

The core features of an SPL (denoted as ΦC ) are those fea-
tures that appear in all products of the SPL. As commented
in [9], this operation is useful to determine which features
should be developed in first place or to decide which fea-
tures should be part of the core architecture of the SPL. This
concept can be easily expressed in Z by means of the gener-
alized intersection4 (denoted as ∩) operator over the set of
valid products:

4 The generalized intersection over A, being A a set of sets, is the set
consisting of all objects belonging to every set in A.

Table 4 SPL feature-related operations summary

Signature and description Motivation

ΦC : SPL → FFeature Architectural design,
development prioritizationCore features, present in all

products

ΦD : SPL → FFeature Detecting inconsistencies in
SPL designDead features, not present in

any product

ΦV : SPL → FFeature Architectural design,
development prioritizationVariant features, present in

some products

ΦU : SPL → FFeature Architecture design,
development prioritizationUnique features, present in

only one product

ΦA : SPL → FF1Feature Detection of feature coupling,
efficient preprocessingAtomic sets of features which

always appear together

ΦC : SPL → FFeature

∀spl : SPL •
ΦC spl = ∩ Π spl

For example, the set of core features of the SPL repre-
sented by the FM in Fig. 2, as can be deduced from its list
of valid products in Fig. 4 where they are displayed in bold
face, is {Mobile Phone, Calls, Screen}.

Theorem 5 (The set of core features of a void SPL is
empty)

∀spl : SPL • void spl ⇒ ΦC spl = ∅

3.4.2 Dead features

On the other hand, features that do not appear in any product
of their SPL are said to be dead features, which are unde-
sired inconsistencies whose detection is essential in SPL
engineering. This can be expressed in Z by means of the
set difference between the SPL features and the generalized
union5 (denoted as ∪) over the set of products, i.e., all the
features appearing in at least one valid product.

5 The generalized union over A, being A a set of sets, is the set con-
sisting of all objects belonging to any set in A.
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Fig. 7 Examples of dead features (in gray) in SPLs represented by
feature models

ΦD : SPL → FFeature

∀spl : SPL •
ΦD spl = spl .features \ ∪ Π spl

For example, all features in gray in Fig. 7 are dead fea-
tures of the SPLs represented by the corresponding FMs.
Notice that in FMs, dead features are caused by a wrong
usage of crosstree constraints [9].

Theorem 6 (All features of a void SPL are dead)

∀spl : SPL • void spl ⇒ ΦD spl = spl .features

3.4.3 Variant features

The variant features of an SPL are those features that appear
only in some products of the SPL, i.e., the features that
are neither core features nor dead features, something that
can be easily expressed in Z by means of the set difference
between the SPL features and its core and dead features:

ΦV : SPL → FFeature

∀spl : SPL •
ΦV spl = spl .features \ ΦC spl \ ΦD spl

For example, the set of variant features of the SPL repre-
sented by the FM in Fig. 2, as can be deduced from its list
of valid products in Fig. 4, is {GPS, Basic, Color, High Res-

olution, Media, Camera, MP3}. Notice that, as a result of the
work described in this article, the definition of this operation
differs from the presented in [9] (see Sect. 5.3.1).

Theorem 7 (The set of variant features of a void SPL is
empty)

∀spl : SPL • void spl ⇒ ΦV spl = ∅

Theorem 8 (The core, variant and dead features of an SPL
partition its features)

∀spl : SPL •
〈 ΦC spl , ΦV spl , ΦD spl 〉 partitions spl .features

3.4.4 Unique features

Those features that appear in only one valid product are said
to be unique and are used to measure the homogeneity of an
SPL (see Sect. 3.5.3). This operation can be specified in Z
using the unique existential quantifier (∃1):

ΦU : SPL → FFeature

∀spl : SPL •
ΦU spl = { fu : spl .features |

∃1 p : Π spl • fu ∈ p }

Theorem 9 (The set of unique features of a void SPL is
empty)

∀spl : SPL • void spl ⇒ ΦU spl = ∅

Theorem 10 (In SPLs with more than one product, unique
features are variant features)

∀spl : SPL • N spl > 1 ⇒ ΦU spl ⊆ ΦV spl

Theorem 11 (In SPLs with only one product, unique fea-
tures are core features)

∀spl : SPL • N spl = 1 ⇒ ΦU spl = ΦC spl

3.4.5 Atomic sets of features

First mentioned in [79] but not formalized yet, the concept
of the atomic sets of features of an SPL is relevant as an
efficient preprocessing technique for SPL automated analy-
sis [9,60]. Informally, an atomic set is a group of features
that can be treated as a unit because they are tightly coupled
and always appear together in the SPL products. Atomic sets
can be used to create a reduced version of the SPL charac-
teristic model simply by replacing groups of features with
the atomic set containing them [9], thus increasing the effi-
ciency of other SPL analysis operations.

From a formal point of view, atomic sets are nonempty
subsets of features such that for every product in an SPL, all
their features appear together in the product or none of them
appear at all, i.e., they are a subset or disjoint with respect
to every product. There are many atomic sets for a given
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SPL, but the interesting ones are the maximal subsets which
are not contained in any other atomic set and in which the
features are grouped in the biggest groups.

In order to make the formal specification of the atomic
sets easier to understand, the set of all potential atomic sets
(denoted as Φ0

A) is defined first. This set contains all feature
subsets with subset-or-disjoint semantics:

Φ0
A : SPL → FF1Feature

∀spl : SPL •
Φ0
A spl = { a0 : F1spl .features |

∀p : Π spl • a0 ⊆ p ∨ a0 ∩ p = ∅ }

Once Φ0
A is defined, the maximal set of atomic sets

(denoted as ΦA) is defined as the set of those atomic sets
which are not included in any other atomic set. Although
the Z notation does not include a maximal relation, it can
be easily defined as a generic relation as follows:

[X ]
maximal : PX ↔ PPX

∀Si : PX ; S : PPX •
maximal( Si ,S ) ⇔ Si ∈ S ∧

� Sj : S • Si ⊂ Sj

Now, having defined the maximal relation, ΦA can be
specified as those potential atomic sets that are maximal, i.e.:

ΦA : SPL → FF1Feature

∀spl : SPL •
ΦA spl = { a : Φ0

A spl | maximal( a, Φ0
A spl ) }

For example, the atomic sets of the SPL represented by
the FM in Fig. 2, as can be deduced from its list of valid
products in Fig. 4, are { {Mobile Phone, Calls, Screen},
{GPS}, {Basic}, {Color}, {High Resolution}, {Media}, {Ca-
mera}, {MP3} }.

Notice that the definition of this operation differs signi-
ficatively from previous informal definitions provided in [9],
[60] and [79], which are VML-dependent, whereas the one
provided in this article is much more abstract and indepen-
dent from the notation used for the characteristic model of
an SPL. More details are provided in Sect. 5.3.3.

Table 5 SPL numerical indicators

Signature and description Motivation

C : SPL × Configuration → R Architectural design,
development prioritizationCommonality factor of configuration

V : SPL → R, Vρ : SPL → R Metric for SPL design
SPL total & partial variability

H : SPL → R, Hold : SPL → R Metric for SPL design
SPL homogeneity (new & old

definitions)

Theorem 12 (The core features, if any, are always one of
the atomic sets)

∀spl : SPL • ΦC spl �= ∅ ⇒ ΦC spl ∈ ΦA spl

Theorem 13 (The dead features, if any, are always one of
the atomic sets)

∀spl : SPL • ΦD spl �= ∅ ⇒ ΦD spl ∈ ΦA spl

Theorem 14 (Void SPLs only have one atomic set, its fea-
tures)

∀spl : SPL • void spl ⇒ ΦA spl = { spl .features }

3.5 SPL numerical indicators

Apart from the number of products (N ) defined in Sect. 3.2.3,
other VML-independent numerical indicators are defined in
this section and summarized in Table 5. As a result of the
test-based validation of the FLAME framework, the defini-
tions of some indicators have been enhanced with respect to
the presented in [9] in order to correct some mistakes and to
avoid division by zero in some quotients. See Sect. 5.3.2 for
details.

3.5.1 Commonality factor of a configuration

The commonality factor of a configuration in an SPL
(denoted as C) is the percentage of products of the SPL
including the given configuration (0 if the SPL is void). Like
the previously specified core features (see Sect. 3.4.1), this
operation may be used to prioritize the development order
of the features or to decide which features should be part of
the core architecture of the SPL [9]. Its specification in Z is
as follows:
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C : SPL × Configuration → R

∀spl : SPL ; c : Configuration •
void spl ⇒ C( spl , c ) = 0

∀spl : SPL ; c : Configuration •
¬ void spl ⇒

C( spl , c ) = #Πσ( spl , c ) / N spl

For example, the percentage of products of the SPL repre-
sented by the FM in Fig. 2 able to play MP3 files but without
GPS is given by the commonality of the partial configura-
tion ({MP3}, {GPS}), which is 4/14 = 28.57 %, as can be
deduced from its list of valid products in Fig. 4.

3.5.2 SPL variability

The variability of an SPL, considered as a measure of its
flexibility, is defined in [9] as the ratio between the number
of its valid products and the number of the potential products
it could have, i.e., 2n − 1 where n is the number of features
under consideration. If all the SPL features are considered,
the variability is referred to as total variability (V), whereas
if only variant features (see Sect. 3.4.3) are considered, it is
referred to as partial variability (Vρ), which is 0 in case the
SPL has no variant features, i.e., in the case the SPL is void
(see Theorem 7) or has only one valid product (see Theorem
11). Their Z specifications are the following:

V : SPL → R

Vρ : SPL → R

∀spl : SPL •
V spl = N spl

2#spl.features − 1
∧

ΦV spl = ∅ ⇒ Vρ spl = 0 ∧

ΦV spl �= ∅ ⇒ Vρ spl = N spl
2#(ΦV spl) − 1

For example, for the SPL represented by the FM in Fig. 2,
its total variability is 14/(210 − 1) = 1.37%, whereas its
partial variability is 14/(27 − 1) = 11.02%.

Theorem 15 (The total variability of a void SPL is 0)

∀spl : SPL • void spl ⇒ V spl = 0

Theorem 16 (The partial variability of a void SPL is 0)

∀spl : SPL • void spl ⇒ Vρ spl = 0

3.5.3 SPL homogeneity

According to [26,27]—but not exactly to [9] (see Sect. 5.3.2
for details)—the homogeneity of an SPL is related to the
number of their unique features (see Sect. 3.4.4). The more
unique features an SPL has, the less homogeneous the
SPL is. Formally, the homogeneity of an SPL was initially
described in [26] as a percentage defined as one minus the
ratio between the number of unique features and the number
of features, i.e., an SPL without unique features would have
an homogeneity of 100 %, whereas another one with a 25 %
of unique features would have an homogeneity of 75 %. This
can be expressed in Z as follows:

Hold : SPL → R

∀spl : SPL •
Hold spl = 1 − #(ΦU spl)

#spl .features

Recently, the definition of this indicator has been revised
in [27] due to erroneous results in some scenarios. For
example, as commented in [27], consider an SPL with 200
products and 50 features, in which every feature is included
in just two products; although the SPL is clearly quite het-
erogeneous, the Hold indicator would say that the SPL is
totally homogeneous. Consider also a void SPL, for which
the value of Hold would be 100 %, something which is at
least debatable.

In order to avoid these problems, the homogeneity of an
SPL has been redefined in [27] as the commonality mean,
i.e., the sum of the commonality factor of all the features6

in the SPL divided by the number of features. This can be
expressed in Z as follows:7

H : SPL → R

∀spl : SPL •
H spl =

∑

fi ∈ spl.features

C( spl , ({fi}, ∅) )

#spl .features

For example, for the SPL represented by the FM in Fig. 2,
which has no unique features, its homogeneity is 100 %
according to the former definition, whereas it is 58.57 %
according to the latter definition. According to its list of

6 The commonality factor of a single feature f is the commonality
factor of a configuration with the single feature f as selected and no
removed features, i.e., C(spl , ({f }, ∅)).
7 The use of the summation symbol (Σ) over the elements of a set is
not explicitly defined in Z, but we have decided to use it for the sake of
understandability.
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valid products in Fig. 4, the latter homogeneity value seems
much more appropriate.

Theorem 17 (The old homogeneity of a void SPL is 100 %)

∀spl : SPL • void spl ⇒ Hold spl = 100 %

Theorem 18 (The new homogeneity of a void SPL is 0 %)

∀spl : SPL • void spl ⇒ H spl = 0%

4 Characteristic model layer of the FLAME
framework

The characteristic model layer (CML) is the layer of
FLAME in which the specific aspects of different VMLs
are taken into consideration. As mentioned in Sect. 3.1, at
least the abstract type Model , and the abstract operations
Φ (features-in-a-model) and ≺≺ (is-instance-of ) have to be
specified in order to formalize an VML.

Among the different VMLs, the FODA-like basic feature
model (BFM) notation, as described in [9], has been chosen
for its formalization for being one of the most widely used in
the SPL community. According to this decision, the abstract
syntax of BFM and the abstract operations declared in the
AFL are specified in the rest of this section.

4.1 BFM as a characteristic model

Following [9], a BFM is a characteristic model in which fea-
tures are organized hierarchically using mandatory, optional,
only-one or one-or-more relationships. A BFM can also
include the so-called crosstree constraints (CTCs), which
can express (1) that a feature requires the presence of
another feature or (2) that a feature excludes another feature,
i.e., that they are incompatible and therefore cannot appear
together in a product. All FMs used in the figures in this
article use BFM as its notation.

4.1.1 BFM metamodel

The first task to formalize a VML in FLAME is to spec-
ify the abstract type Model , which usually represents the
VML metamodel. For that purpose, the metamodel in Fig. 8
was first developed in UML and then formalized in Z by
means of the so-called free types [65], which are usually
used to specify abstract syntaxes. Finally, the abstract syn-
tax was translated into Prolog functors (see Appendix 4 for
details).

ledomateMMFBssalc

AFL

OnlyOne

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

Abstract Foundation Layer::SPL

SPL

Abstract Foundation Layer::Feature Abstract Foundation Layer::Model

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

Feature

name:  string

Model

check() : Boolean
features() : Set<Features>
is-instance-of(p :Product) : Boolean

CTC

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

Requires Excludes

TreeFeature

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

Relationship

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

Mandatory

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

Optional

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

OneOrMore

features() : Set<Feature>
is-instance-of(p :Product) : Boolean

1

1

1..*

1..*

0..*

1

2..*

1

0..*

f1 1 f2 1

1

1

2..*

Name:
Package:
Version:
Author:

BFM Metamodel
Characteristic Model Layer
2.0
Amador Durán Toro

Fig. 8 BFM metamodel

Following this approach, the main symbol in the BFM
abstract syntax is used to redefine the abstract type Model
as a pair formed by a feature tree and a finite set of crosstree
constraints which could be empty:

Model ::= BFM 〈〈 FeatureTree × FCTC 〉〉
Then, feature trees are defined as having a feature name

and a set, which could be empty, of mandatory, optional,
one-or-more or only-one relationships:

FeatureTree ::= feature〈〈 Feature × FRelationship 〉〉
Relationship ::= mandatory 〈〈 FeatureTree 〉〉

| optional 〈〈 FeatureTree 〉〉
| one or more 〈〈 F2FeatureTree 〉〉
| only one 〈〈 F2FeatureTree 〉〉
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Notice that the one-or-more and only-one relationships
are compound of a finite set of at least two feature trees,
as indicated by the corresponding multiplicities in the BFM
metamodel in Fig. 8. In this case, F2 is generically defined
as F2X=={ S : FX | #S ≥ 2 }, i.e., the type of finite
sets with at least two elements.

The other elements in BFMs are the crosstree con-
straints, which are defined as the CTC type formed by
pairs of feature names which require or exclude each
other:8

CTC ::= requires 〈〈 Feature × Feature 〉〉
| excludes 〈〈 Feature × Feature 〉〉

As an example, the BFM in Fig. 2 can be represented in
the previously defined abstract syntax as follows:

BFM (
feature( MobilePhone, {

mandatory( feature(Calls, ∅) ),
optional( feature(GPS , ∅) ),
mandatory( feature(Screen), {

only one( {
feature(Basic, ∅),
feature(Color , ∅),
feature(HighResolution, ∅)

} )
} )
optional( feature(Media), {

one or more( {
feature(Camera, ∅),
feature(MP3, ∅)

} )
} )

} ),
{

excludes(GPS ,Basic),
requires(Camera,HighResolution)

}
)

4.1.2 Helper functions for BFM specification

In order to make the specification easier to read, some helper
functions can be defined over the previously defined BFM
abstract syntax. The first ones are simply a pair of functions

8 Other approaches like [5] propose the use of propositional logic, e.g.,
well-formed formulas, for CTCs. See for example [7], in which a very
preliminary version of this work includes them.

used to extract the feature tree, and the set of CTCs from a
given BFM:

tree : Model → FeatureTree

ctc : Model → FCTC

∀t : FeatureTree; c : FCTC •
tree BFM (t , c) = t ∧
ctc BFM (t , c) = c

Another helper function is the children function, which
returns the set of children feature subtrees in a relationship.
Its specification in Z is as follows:

children : Relationship → F1FeatureTree

∀ti : FeatureTree; t : F2FeatureTree •
children mandatory( ti ) = { ti } ∧
children optional( ti ) = { ti } ∧
children one or more( t ) = t ∧
children only one( t ) = t

The last helper functions are ϕτ , ϕR and ϕχ, which,
respectively, return the bag of feature names used in a
FeatureTree, in a Relationship and in a CTC . In Z,
bags (also known as multisets) are represented as lists of
unordered elements allowing duplicates, i.e., [[a, b, b, c, d ]].
Formally, a bag of objects of type T is a partial function
T �→ N, i.e., a function that assigns each object in the bag
the number of times it appears in the bag. For example, the
former sample bag can also be represented as the function
extension {a �→ 1, b �→ 2, c �→ 1, d �→ 1}. As in all func-
tions, the domain (dom) and range (ran) operators can be
applied returning, respectively, the set of objects in the bag
(without duplicates) and the set of cardinalities (also without
duplicates), i.e., dom [[a, b, b, c, d ]] = {a, b, c, d}, whereas
ran [[a, b, b, c, d ]] = {1, 2}.

Having said that, the ϕτ , ϕR and ϕχ functions can be
defined as follows, in which the � and

⊎
symbols represent,

respectively, the bag union and the generalized bag union9

over a bag of bags:

9 The generalized bag union over A, being A a bag of bags, is the bag
consisting on the union of all the bags in A. Although it is not explicitly
defined in Z, we have decided to use it for the sake of understandability.
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ϕτ : FeatureTree → bagFeature

ϕR : Relationship → bagFeature

ϕχ : CTC → bagFeature

∀ f1, f2 : Feature; ri : Relationship;

r : FRelationship •
ϕτ feature( f1, r ) = [[ f1 ]] �

⊎
[[ rj : r • ϕR rj ]] ∧

ϕR ri =
⊎
[[ tj : children ri • ϕτ tj ]] ∧

ϕχ requires( f1, f2 ) = [[ f1, f2 ]] ∧
ϕχ excludes( f1, f2 ) = [[ f1, f2 ]]

In other words, the bag of features of a feature tree
is formed by its root feature and the union of all the
feature bags from its relationships. In turn, the bag of
features of a relationship is the union of all the feature
bags from its children subtrees. Finally, the bag of features
of a CTC is formed by the two features involved in the
constraint.

4.2 Redefining the features-in-a-model function

The Φ function must also be redefined in order to make con-
crete the abstract definitions in the AFL. First, the feature
names in a BFM are specified as the union of the feature
names in its feature tree (Φτ ) and in all its CTCs (Φχ). Then,
the Φτ and Φχ functions are defined as the domains of the
corresponding feature bags ϕτ and ϕχ defined in the previ-
ous section, i.e.:

Φ : Model → FFeature

Φτ : FeatureTree → FFeature

Φχ : CTC → FFeature

∀m : Model ; ti : FeatureTree; ctci : CTC •
Φ m = Φτ tree m ∪

∪{ ctcj : ctc m • Φχ ctcj } ∧
Φτ ti = dom( ϕτ ti ) ∧
Φχ ctci = dom( ϕχ ctci )

For example, in the case of the BFM in Fig. 2, its
set of feature names would be: dom [[Mobile Phone, Calls,
GPS, Screen, Basic, Color, High Resolution, Media, Camera,
MP3]] ∪ dom [[GPS, Basic]] ∪ dom [[Camera, High Resolu-

tion]] = { Mobile Phone, Calls, GPS, Screen, Basic, Color, High
Resolution, Media, Camera, MP3 }.

4.3 Redefining the SPL type

As commented at the end of Sect. 3.1.1, the abstract SPL
schema type can be augmented with additional invariants
related to the nature of features or models. In the case of
BFMs, two invariants apart from the one defined in the AFL
have to be added in order to guarantee the structural cor-
rectness of the models, resulting in the following schema
type:

SPL
model : Model [SPL using BFM]

features : F1Feature

Φ model = features

ran( ϕτ tree model ) = { 1 }
∀ ctci : ctc model •

Φχ ctci ⊆ Φτ tree model

The first invariant, considering that, structurally, BFMs
are trees and that feature names are usually unique identi-
fiers in FODA-like VMLs, states that the same feature name
cannot appear more than once in the SPL feature tree. For
example, in the case of M1 in Fig. 9, the bag of feature
names of its feature tree is [[A, B, C, D, E, F, G]], in which
all feature names appear only once, i.e., the bag range is
{1}. On the other hand, the corresponding bag for M2 is [[A,
B, C, C, D, D, D]], whose range is {1, 2, 3} because two fea-
ture names (C and D) appear more than once thus making
the SPL represented by M2 incorrect.

The second invariant states that the feature names in the
CTCs must be a subset of the feature names in the feature
tree, i.e., that all CTCs must be defined over features appear-
ing in the feature tree. For example, a CTC such as G requires

H in M1 in Fig. 9 would be incorrect because H does not
appear in the M1 feature tree.

M1 M2

D E

A

CB F G

Requires

r1
r2

r3

r4 c1

C D

A

B D D

Requires

C

(a) (b)

Fig. 9 Examples of structurally correct (a) and incorrect (b) BFMs

123



www.manaraa.com

FLAME: a formal framework for the automated analysis of SPLs 1065

4.4 Redefining the is-instance-of relation

The redefinition of the ≺≺ relation is structurally similar to
the redefinition of the Φ function. In this case, the first step is
to specify whether a product is an instance of an SPL using
a BFM as its characteristic model. Basically, a product is an
instance of such an SPL if it is an instance of its feature tree
and of all their CTCs, i.e.:

≺≺ : Product ↔ Model

∀p : Product ; m : Model •
p≺≺m ⇔ ( p≺≺τ tree m ∧

∀ctci : ctc m • p≺≺χctci )

The second step is the specification of the ≺≺ relation
for BFM trees (denoted as ≺≺τ ) and for its relationships
(denoted as ≺≺R). In the former relation, a product is an
instance of a feature tree if it includes the parent feature
name and is an instance of all its children relationships,
i.e.:

≺≺τ : Product ↔ FeatureTree

∀p : Product ; f : Feature; r : FRelationship •
p≺≺τ feature( f , r ) ⇔

( f ∈ p ∧ ∀ ri : r • p≺≺Rri )

For example, a product is an instance of the A feature tree
in Fig. 9a if it contains feature A and it is also an instance of
relationships r1, r2 and r3.

With respect to relationships, four cases have to be con-
sidered. In the case of mandatory subtrees, a product is
an instance if it is an instance of the mandatory subtree,
i.e.:

≺≺R : Product ↔ Relationship

∀p : Product ; ti : FeatureTree •
p≺≺Rmandatory( ti ) ⇔ p≺≺τ ti

For example, in Fig. 9a, a product is an instance of the
mandatory relationship r2 if it is an instance of the C subtree,
i.e., if it contains C.

In the case of optional subtrees, a product is an instance if
it is an instance of the optional subtree or it is disjoint from
the subtree features. Formally:

≺≺R : Product ↔ Relationship

∀p : Product ; ti : FeatureTree •
p≺≺Roptional( ti ) ⇔

( p≺≺τ ti ∨ p ∩ Φτ ti = ∅ )

For example, in Fig. 9a, a product is an instance of the
optional relationship r1 if (1) it is an instance of the B sub-
tree, i.e., it contains {B, D}, or {B, E}, or {B, D, E} or, (2) it
is disjoint from the subtree features, i.e., it does not contain
any of {B, D, E}.

In the case of one or more and only one subtrees, all
their branches are considered as optional, except that the
product must be an instance of at least, one of them (and
only one in the only one case). These relationships can be
formally specified as follows:

≺≺R : Product ↔ Relationship

∀p : Product ; ti : FeatureTree;

t : F2FeatureTree •
p≺≺Rone or more( t ) ⇔ (

∀tj : t • p≺≺Roptional( tj ) ∧
∃ tk : t • p≺≺τ tk ) ∧

p≺≺Ronly one( m ) ⇔ (

∀tj : t • p≺≺Roptional( tj ) ∧
∃1 tk : t • p≺≺τ tk )

For example, in Fig. 9a, a product is an instance of the
one or more relationship r4 if it is an instance of the D

or E subtrees (or both). On the other hand, a product is an
instance of the only one relationship r3 if it is an instance
of only one of the F or G subtrees.

Finally, the ≺≺ predicate corresponding to CTCs (denoted
as ≺≺χ), with the usual semantics of logical implication and
mutual exclusion, is the following:

≺≺χ : Product ↔ CTC

∀p : Product ; f1, f2 : Feature •
p≺≺χrequires( f1, f2 ) ⇔ ( f1 /∈ p ∨ f2 ∈ p )

∧
p≺≺χexcludes( f1, f2 ) ⇔ ( f1 /∈ p ∨ f2 /∈ p )

Once the abstract type Model and the operations Φ
(features-in-a-model) and ≺≺ (is-instance-of ) have been
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made concrete for BFM in the CML, all the analysis oper-
ations defined in the AFL (see Sect. 3) can be used without
modification. Apart from this high level of reuse, other
BFM-specific operations like those commented in [9] can
also be defined in the CML. For the specification of other
VMLs in the CML, see Appendices 1 and 2.

5 Test-based validation of the FLAME framework

In order to validate the FLAME framework, the Prolog
animation was tested using a fully automated approach
following the IX commandment proposed in [13], which
stresses the importance of testing when using formal meth-
ods. The goal of the test-based validation was twofold:
(1) detecting flaws in the Z specification, i.e., mismatches
between what was intended to be specified—the require-
ments describing in natural language the intuitive semantics
in [9]—and the actual specification—the formal semantics
described in Z in this article; and (2) detecting mismatches
between the formal specification and its animation. In the
following sections, the testing approach used, the validation
setup and the main results obtained during the validation of
the FLAME framework are presented.

5.1 Metamorphic testing on the analysis of feature
models

For the test-based validation of FLAME, the metamorphic
test data generator presented by some of the authors in [64]
was used. This generator, which is publicly available as a
part of the open-source Java framework BeTTy [63], relies
on a set of metamorphic relations between FMs and their
corresponding set of valid products.

More specifically, a metamorphic relation is defined for
each type of relationship among features, i.e., mandatory,
optional, or, alternative, requires and excludes. Roughly
speaking, these relations are based on the fact that when a
variability constraint is added to an FM M , the set of valid
products of the resulting neighbor model M ′ can be derived
from the original one. As an example, consider the neigh-
bor FMs and their associated product sets in Fig. 10, where
M ′ is derived from M by adding a mandatory feature D as a
child of feature B. According to the semantics described in
Sect. 2.1, the set of products of M ′ can be derived by adding
the new mandatory feature D in all the products of M where
its parent feature B appears.

Formally, let fm be the mandatory feature added to M
and fp its parent feature. Then, the metamorphic relation
between the products of M and those of M ′ can be defined
as shown below (see [62] for the formal definition of all
metamorphic relationships in FMs).

Fig. 10 Neighbor feature models after a mandatory feature (in gray)
is added

#Π(M ′) = #Π(M ) ∧
∀p ∈ Π(M ) • fp /∈ p ⇒ p ∈ Π(M ′) ∧

fp ∈ p ⇒ ( p ∪ {fm} ) ∈ Π(M ′)

The metamorphic relations are used together with model
transformations to generate FMs and their respective set of
products, as shown in Fig. 11. The process starts with an
input FM whose set of valid products is known, i.e., a seed,
which can be randomly generated from scratch, as in our
approach, or obtained from an existing test case. A num-
ber of stepwise transformations are then applied, producing
a neighbor model as well as its corresponding set of prod-
ucts according to the metamorphic relations. This process is
repeated until some desired properties, e.g., number of fea-
tures, are achieved. In Fig. 11, M0 is progressively extended
in four steps until obtaining M4 with 8 features {A..H} and
one CTC representing 6 different products.

Finally, once a FM with the desired properties is created,
it is used as a non-trivial input for the analysis. Simultane-
ously, its set of products is automatically inspected to obtain
the output of a number of analysis operations. Considering
the Mi models and the sets of products generated in Fig. 11,
together with the analysis operations described in Sect. 3,
the expected output of all of them can be obtained by sim-
ply answering questions such as:

– IsM1 void? No, its set of products is not empty.
– How many different products does M2 represent? 8 dif-

ferent products.
– Is p = {A,B,F} a valid product of M3? No, it is not

included in its set of products.
– Which are the core features of M4? Features {A,C}.
– What is the commonality of feature B inM4? Feature B is

included in 5 out of the 6 products of the set. Therefore,
its commonality is 5/6 = 83.3%.

– Does M3 contain any dead feature? Yes, feature G is
dead since it is not included in any of the products rep-
resented by M3.
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Fig. 11 Random generation of FMs and their set of products using metamorphic relations

The effectiveness of this metamorphic testing approach
was evaluated using mutation testing [64]. In particular,
hundreds of artificial faults (i.e., mutants) were introduced
into several subject programs checking how many of them
were detected by the test data generator. The percentage
of detected faults, i.e., mutation coverage, ranged between
98.7 and 100 %, which supports the effectiveness of the
approach.

5.2 Test-based validation setup

The formal specification and its Prolog animation were
developed in parallel, so it was possible to manually develop
and run small tests as long as the analysis operations were
specified and translated into Prolog. Although these tests
were not developed systematically, they were quite use-
ful for illustrating discussions among the authors and for
detecting some problems related to numerical indicators (see
Sect. 5.3.2). Once the reference implementation was fin-
ished, the systematic test-based validation was performed in
a three-step process described below.

5.2.1 Test cases generation

For each analysis operation, 1000 test cases were automati-
cally generated using BeTTy. Each test case was composed
of a random input FM and an expected output. In the case
of operations receiving other inputs apart from an FM (e.g.,
valid product, which takes a product to be checked), these
inputs were generated using a partition equivalence strategy
[6,46], e.g., generating valid and non-valid products with
equal probability. For efficiency, FMs were generated with
10 features and 0–30 % of CTCs with respect to the num-

ber of features. Previous works in testing by some of the
authors of this article have shown that FMs with 10 features
are complex enough to reveal faults effectively [64].

5.2.2 Tests execution in Prolog

Once the test cases for each operation were generated, they
were translated into Prolog and integrated with the unit test
framework described in [77]. An example of such integra-
tion for the number of valid products operation is shown in
Fig. 12. Once prepared, the tests were executed against the
Prolog animation and the results were checked. Whenever a
fault was detected, the Prolog animation and/or the formal
specification was fixed and the tests were executed again.
This process was repeated until obtaining a 100 % of suc-
cessful tests for all the analysis operations.

As reported by the Prolog unit test framework used, a
100 % clauses coverage was achieved in the 20 Prolog files
implementing the animation. Exceptionally, it was under
100 % in two general-purpose files for managing sets and
lists because only a portion of the code in those files is used
by the animation. These results support the feasibility of the
test-based validation approach and reinforce our confidence
in the correctness of the reference implementation.

5.2.3 Tests execution in FaMa

Finally, all the generated test cases were executed against
the FaMa framework [10,36], a mature framework pre-
viously developed by some of the authors based on a
informal description of the analysis operations and well-
known by the SPL community [71]. Using the Prolog
animation as a reference implementation, the FaMa frame-
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Fig. 12 Structure of a Prolog unitary test for the validation of the nop

(number of products) operation

work was checked in order detect possible deviations from
expected results. Due to the maturity of the FaMa frame-
work, this step was considered as a double-check for both
frameworks.

In order to avoid biased results, the test-based validation
process was performed by a group of authors completely
independent from those in charge of the development of the
formal specification and the reference implementation.

5.3 Test-based validation results

The test-based validation of the FLAME framework rev-
ealed several flaws, especially in the previous informal
definitions of some of the analysis operations in [9]. A
description of these faults and how they were fixed are next
presented.

5.3.1 Variant and dead features

In [9], variant features are defined as “those [features] that
do not appear in all the products of an SPL”. Taking this
definition as a reference, the variant features (ΦV ) of an
SPL were initially specified as all the features of an SPL
except those that appear in all the products, i.e., all the fea-
tures except the core features (ΦC ):

ΦV spl = spl .features \ ΦC spl

When the test-based validation was performed, it revealed
that the previous definition considered dead features (i.e.,
those that do not appear in any product) as variant, even in

the case of void SPLs, in which all their features are dead.
After a discussion among the authors, the agreement on
dead features not being variant was unanimous, so the infor-
mal definition in [9] was enhanced to explicitly declare that
variant features cannot be dead and both the formal specifi-
cation and its corresponding reference implementation were
corrected (see Sect. 3.4.3 for the final definition and specifi-
cation). This new definition of variant features implies that
the core, variant and dead features are a partition of the fea-
ture set of an SPL, i.e., they are disjoint to each other and
their union is the feature set:

∀spl : SPL •
ΦC spl ∩ ΦV spl = ∅ ∧
ΦC spl ∩ ΦD spl = ∅ ∧
ΦV spl ∩ ΦD spl = ∅ ∧
spl .features = ΦC spl ∪ ΦV spl ∪ ΦD spl

Or more succinctly:

∀spl : SPL •
〈 ΦC spl , ΦV spl , ΦD spl 〉 partitions spl .features

This result has been incorporated into the AFL and rein-
forced by the addition of Theorem 8 and its corresponding
proof. See Sect. 3.4.3 and Appendix 3 for details.

5.3.2 Homogeneity and other numerical indicators

During the test-based validation, a problem with the def-
inition of the homogeneity operation was detected. This
operation was described in [9] as:

H spl = 1 − #(ΦU spl)
N spl

and the metamorphic tests made evident that if an SPL
is void, its homogeneity cannot be computed because it
includes a division by zero. After reviewing the original
definition of the operation in [26], it was clear that there
was a mistake in the definition of homogeneity in [9], so
the formal specification was fixed in order to be compliant
with their authors by substituting N spl by #spl .features in
the denominator. However, as commented in Sect. 3.5.3, the
definition of this indicator has been recently revised in [27],
so its specification in the AFL has been updated accordingly.

The homogeneity bug was a signal to review all numeri-
cal indicators in which a division by zero was possible. This
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A

F G
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AS1 = { A,C,D }

AS3 = { F } AS4 = { G }AS2 = { B,E }
Requires

Fig. 13 Feature model reduction applying atomic sets

review led to enhanced definitions of commonality and par-
tial variability (see Sects. 3.5.1 and 3.5.2) with respect to
the definitions in [9]. In the case of the former operation, it
was not defined for void SPLs, whereas the latter was not
defined for SPLs without variant features. In the FLAME
framework, both operations are correctly specified, includ-
ing those situations not previously considered. The FaMa
framework [10,36] was also updated to be compliant with
the new specification.

5.3.3 Atomic sets semantics

One of the most interesting results of the test-based val-
idation was the difference between the semantics of the
original, FM-dependent atomic sets operation and the same
VML-independent operation defined in FLAME.

The concept of atomic set, as defined in [60,79] and as
implemented in the FaMa framework, is defined only over
FMs, and it is based not on a formal specification, but on an
algorithm that merges parent features with their mandatory
children features without considering CTCs. This concept of
atomic sets allows an FM to be reduced by replacing groups
of features by the corresponding atomic sets in its feature
tree, as shown in Fig. 13, borrowed from [9].

In the FLAME framework, the concept of atomic sets is
specified not structurally but semantically in a higher-level,
VML-independent manner (see Sect. 3.4.5), so it is applica-
ble not only to FMs but to any VML used as a characteristic
model of an SPL. In FLAME, the atomic sets of an SPL are
those maximal groups of features with a subset-or-disjoint
semantics with respect to the SPL products: For every prod-
uct, all the features in an atomic set appear together in the
product, i.e., they are a subset of the product, or none of
them appears at all, i.e., they are disjoint with the product.

With these semantics, both frameworks produced the
same atomic sets during the test-based validation except
when CTCs were relevant. For example, for the FM in
Fig. 13, the atomic sets produced by both frameworks are

A

F G
Requires

B C D

E
Requires

FLAME

AS1 = { A,C,D }

AS2 = { B,E, F }

AS3 = { G }

FaM
a

AS1 = { A,C,D }

AS3 = { F } AS4 = { G }AS2 = { B,E }
Requires

Requires

Fig. 14 Different atomic sets from the FaMa and FLAME frame-
works

the same. If a new CTC (F requires E) is introduced, FaMa
produces the same set of atomic sets, whereas FLAME pro-
duces {A,C,D}, {B,E,F} and {G} (see Fig. 14).

Notice that whereas the FaMa framework is able to
reduce an FM using its atomic sets, the FLAME framework
only computes the atomic sets, since it is VML independent.
Notice also that those atomic sets computed by FLAME
can be more accurate if CTCs are relevant. In general, both
computations of atomic sets are interesting for different
motivations, so the FaMa framework is being updated to
include the new semantics but preserving the original ones.

5.3.4 Prolog toolkit for sets

In the early stages of the test-based validation, a fault in the
Prolog toolkit developed for set theory was detected. The
problem was related to the comparison of sets of sets (i.e.,
sets of products) that only worked if the sets to be compared
were sorted in the same order. This fault was rapidly fixed
so the Prolog animation could be systematically tested.

6 Related work

In a literature review developed by some of the authors [9],
the formalization of analysis operations on FMs was identi-
fied as the main challenge in the field. In that work, up to 30
analysis operations were identified and informally reported
and explained. In contrast to that work, the formal seman-
tics of 20 out of the former 30 analysis operations, all those
that could be reformulated in FM-independent manner are
provided in this article.

There are some proposals in the literature that have
already defined formally, or at least with certain level of
rigor, different analysis operations on FMs. They are sum-
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Table 6 Summary of the proposals reporting formalization of analysis
operations on feature models

ABS RI TBV NOP

Zhang et al. [79] − + − 4

Benavides et al. [8] − + − 7

Von der Massen et al. [72] − − − 1

Sun et al. [66] − + ∼ 5

Fan et al. [25] − + − 1

Gheyi et al. [32] − + − 4

Bachmeyer et al. [4] − − − 1

Schobbens et al. [59] ∼ − − 3

Gheyi et al. [33] − + − 2

Mendonca et al. [44] − − − 4

Trinidad et al. [70] − + − 4

Zhang et al. [78] − + − 3

Fernandez et al. [26] − − − 3

White et al. [76] − + − 1

FLAME + + + 20

marized in Table 6 including the FLAME framework in the
last row.

The first column in Table 6 (ABS) indicates if the pro-
posal listed in the column is abstract, i.e., whether it
specifies the semantics of the analysis operations without
being coupled with any specific VML. In that sense, the
FLAME framework, with all its analysis operations defined
in the AFL (see Sect. 3), is a pioneer. Only Schobbens et
al. [59] propose a sort of level of abstraction. In that work,
a new FM notation called VFD (Variant Feature Diagrams)
is defined and compared with other existing FM dialects.
Their conclusion is that all the analyzed dialects can be
translated into VFD, which is proved to be expressively
complete and, as an example, some analysis operations are
defined using it. In contrast, FLAME defines, among others,
all the operations defined in [59] but at a much more abstract
level, decoupled from any specific FM notation. Further-
more, the semantics of VFD could be specified in the CML
of the FLAME framework applying the systematic approach
defined in Sect. 4.

The second column in Table 6 (RI) indicates if the pro-
posal has a reference implementation derived from its for-
malization. There are some proposals that include an imple-
mentation of their formalization, but in most of the cases it is
because the formalization is based on the underlying para-
digm of the implementation platform. For instance, in [8],
a constraint satisfaction problem (CSP) solver is used to
implement seven operations defined using CSP primitives.
Likewise, Fan and Zhang [25] use Description Logic to

specify some analysis operations and a description logic rea-
soner as the implementation platform. In contrast, FLAME
uses Z as an independent specification language and its cor-
responding Prolog animation as a reference implementation.
Only Sun et al. [66] follow a similar approach. In that work,
Z is also used to specify the semantics of FMs and an imple-
mentation using Alloy [38] is provided. However, the Z
specification developed in [66] is FM dependent, it cannot
be extended to formalize other VMLs in a systematic way
like FLAME, and the number of specified analysis opera-
tions is also lesser than in FLAME.

The third column in Table 6 (TBV) indicates if the pro-
posal has been validated using a test-based approach. With
respect to this, FLAME is the only proposal that, to the
best of our knowledge, has applied an automated, system-
atic, test-based validation to its formal specification. Again,
only Sun et al. [66] follow a similar approach performing
a double validation. On the one hand, they develop 40 the-
orems and prove them using Z/EVES [55], although many
of the them are merely auxiliary theorems to make the auto-
matic proof possible. On the other hand, they animate their
Z specification in Alloy and use a sample FM to test it. In
both cases, they do not follow a systematic and automated
approach as the described in Sect. 5, so their validation
process cannot be considered as thorough as the one per-
formed for FLAME.

Finally, the fourth column in Table 6 (NOP) shows that
FLAME has the highest number of analysis operations
specified, all of them in a VML-independent manner. As
commented at the end of Sect. 4, it is possible to specify
FM-dependent analysis operations in the CML of FLAME
like false optional features, conditionally dead features and
others described in [9], although in this article only opera-
tions in the AFL of FLAME have been included in order to
avoid an excessive length.

There are other VMLs that support some analysis opera-
tions. For instance, TVL (Text-based Variability Language)
is a textual VML inspired in FMs whose syntax and seman-
tics are formally presented in [18]. The semantics of TVL
are represented as the set of products described by an
instance of the language. In contrast to FLAME, TVL’s
formal semantics is coupled with a specific language, the
formal semantics of operations are not discussed and it
has not been validated by systematic testing. FAMILIAR
[1] is another textual VML that supports analysis capabil-
ities. Similar to TVL, FAMILIAR is coupled with a specific
notation, no formal semantics of the analysis operations
are provided, and no testing-based validation has been per-
formed.

Apart from the previously mentioned, there is a new
stream of works that are extending the catalog of 30 analysis
operations on FMs initially described in [9], especially from
the testing area, in which the problem of selecting a set of
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products to be tested from an FM can be seen as an analy-
sis operation. Just to mention a few, there are works using
multiobjective approaches [29,30,34,47,56] for test selec-
tion, while some others explore t-wise testing [24,48–50].
Although out of the scope of this work, FLAME could also
be used to formalize these new operations.

7 Conclusions and future work

7.1 Conclusions

The main challenge identified in [9] in their survey on 20
years of automated analysis of FMs—formally describe all
the operations of analysis [of FMs] and provide a formal
framework for defining new operations—has been success-
fully faced and has resulted in the following contributions.

7.1.1 A reusable, verified formal framework

The developed formal framework, FLAME, can be used to
formally specify not only FMs, but other VMLs as well. This
reusability is achieved by its two-layered architecture. The
AFL is the bottom layer which includes not only the def-
initions of necessary abstract concepts that can or must be
redefined in the second layer, but also 20 VML-independent,
therefore reusable, analysis operations. On top on the AFL,
a family of CMLs, one for each VML to be formally spec-
ified, can be developed systematically. In this article, BFM,
a FODA-like VML, has been formalized, but the same sys-
tematic approach could have been applied to other VMLs
such as OVM [51] or CUDF [69] (see Appendices 1 and
2 for details on their ongoing formalization). Recently, an
extension to the BFM specified in FLAME including non-
functional feature attributes has been presented in [2].

7.1.2 An exhaustively tested reference implementation

In order to support tool development, a reference implemen-
tation, i.e., the result of the animation of the Z specification
in Prolog, has also been developed as part of the FLAME
framework. This reference implementation, currently used
by students and tool developers, has been exhaustively
tested, not only manually, but also automatically with more
than 20,000 metamorphic test cases randomly generated
using the BeTTy framework.

The AFL has also been formally verified by proving the
18 theorems that are included in Sect. 3 and proved in
Appendix 3.

7.1.3 Enhancements in SPL theory and tools

As a result of the successful integration of formal methods,
i.e., Z and manual theorem proving on one hand, and auto-
mated metamorphic testing on the other hand, the following
enhancements in SPL theory and tools have been achieved:

– New consistent semantics for the core, dead and variant
features operations have been developed and incorpo-
rated into FaMa (see Sect. 5.3.1).

– The error in the description of the homogeneity operation
in [9] and in its corresponding FaMa implementation
has been fixed; its definition has been updated (see
Sect. 5.3.2).

– New enhanced definitions of commonality and partial
variability operations avoiding potential divisions by
zero have been developed and their corresponding FaMa
implementations upgraded (see Sect. 5.3.2).

– New VML-independent semantics for the atomic sets
operation, which could lead to stronger model reduc-
tions in the future, have been developed and incorpo-
rated into FaMa while keeping also the FM-dependent
version. As commented in Sect. 5.3.3, both operation
versions produce interesting results for SPL engineers.

7.2 Future work

The following lines of future work have been identified dur-
ing the development of the FLAME framework.

7.2.1 Specification of more variability modeling languages

The success in the development of the FLAME framework
invites to apply the same approach to the formalization of
other VMLs. The formalizations of OVM [51] and CUDF
[69] are advanced (see Appendices 1 and 2 for details). We
are currently working on the identification of the metamor-
phic relationships in both notations in order to be able to
automatically generate test cases with BeTTy [62,63].

We are also considering the formalization of other FM-
like notations, such as those including cardinalities [22], or
those extending features with numerical information in the
form of attributes and relationships among them [2,8,54].

There is another family of VMLs known as decision
models [21,57,58] that could be formalized using FLAME.
Formalizing concepts for decisions models would be pos-
sible if we follow the approach described in [23], which
allows transforming FMs to decision models and backwards,
leading to the development of a CML for decision models.
Textual VMLs have also been explored in the literature, such
as FAMILIAR [1] and TVL [18]. Extending FLAME to sup-
port the semantics of those languages could be explored in
the future.
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7.2.2 Formalization of other analysis operations

Another interesting extension of FLAME is the formaliza-
tion of VML-dependent analysis operations, some of them
already mentioned in [9], such as false optional features or
conditionally dead features. Also, as explained in Sect. 6,
there is a new stream of work dealing with the selection of
products for testing purposes. We can envision a FLAME
extension to formalize testing-oriented analysis operations.

7.2.3 Redefining Π using metamorphic relationships

Although the reference implementation in FLAME does not
have performance as one of its main goals, it is possible to
improve performance significatively by redefining the valid
products function (Π) in a VML-dependent manner. Cur-
rently, we are working on a redefinition of Π for those
notations in which metamorphic relationships can be defined
(see [62] for some examples), for example, the FODA-like
BFM notation formalized in this article.

7.2.4 Develop a more efficient atomic set algorithm

Another relevant point for performance improvement is the
computation of the atomic sets of features. The abstract defi-
nition in Sect. 3.4.5 is elegant and easy to understand, but its
algorithmic complexity is exponential because of the com-
putation of the powerset of the features. We have designed
a polynomial algorithm for the same computation which is
currently under formalization and development.

7.2.5 Formalization of abstract features

Recently, the study of abstract features, i.e., features that
appear in a variability model only to arrange other elements
but with no associated semantics, has been recognized as an
important challenge in [68] and [53]. The study of how to
include abstract features in FLAME leads to another appeal-
ing future work.

7.2.6 Exploring other alternatives of animation

Exploring other alternatives for specification animation
seems also interesting, being Alloy, Description Logic, and
Maude the more likely candidates. The parallel development
of the Z specification and its animation in Prolog generated
a positive feedback between the two of them. Using other
implementation platforms could bring new synergies and
increase the quality of the FLAME framework in the future.
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Appendix 1: CML preview for OVM

This appendix contains the metamodel and the correspond-
ing abstract syntax for the Orthogonal Variability Modeling
(OVM) notation [51]. The complete CML specification,
including the Φ (features-in-a-model) function and the ≺≺
(is-instance-of ) predicate, has not been included in order to
avoid an excessive length of the article.

The main concepts in OVM models are variation points,
variants and constraints. Their graphical representation is
shown in Fig. 15, borrowed from [54]. The corresponding
metamodel is shown in Fig. 16. For a thorough description
of the OVM notation, the interested reader can consult [51].

The translation of the metamodel into an abstract syntax
specification in Z is the following. First, an OVM model is
defined as a nonempty set of variation points and a set of
constraints.

Model ::= OVM 〈〈 F1VariationPoint × FConstraint 〉〉

Then, variation points are defined as mandatory and
optional. In both cases, they are formed by a feature name
and a nonempty set of relationships.

VariationPoint ::= mandatory〈〈 Feature × F1Relationship 〉〉
| optional〈〈 Feature × F1Relationship 〉〉

The relationships between variation points and its vari-
ants are described as follows. Notice that the alternative
relationship includes two natural numbers for the maximum

Fig. 15 OVM notation summary
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Fig. 16 OVM metamodel

and minimum cardinalities. Also, variants are described as
containers of one feature name.

Relationship ::= mandatory 〈〈 Variant 〉〉
| optional 〈〈 Variant 〉〉
| alternative 〈〈 F2Variant × N × N 〉〉

Variant ::= variant〈〈 Feature 〉〉

A generalization of variation points and variants, vari-
ation element, is needed to specify constraints, which are
represented in a similar way as CTCs in BFM, except that
in this case they can be set between any pair of variation
elements, i.e., variation points and variants.

VariationElement ::= VariationPoint | Variant
Constraint ::=

requires 〈〈 VariationElement × VariationElement 〉〉 |
excludes 〈〈 VariationElement × VariationElement 〉〉

Appendix 2: CML preview for CUDF

In a similar way to Appendix 1, this appendix contains
a preview of the CML for a simplified version of Com-
mon Upgradeability Description Format (CUDF) docu-
ments [69], a format for describing variability in package-
based Free and Open-Source Software (FOSS) distributions.
A sample fragment of a CUDF document is shown in
Fig. 17.

Packages, attributed with name and version, are the main
concept in CUDF documents, equivalent to features in BFM
or OVM. They can be related to each other by conflict
and dependency relationships. Dependency relationships
can be grouped conjunctively—all dependencies must be
satisfied—or disjunctively—at least one dependency must
be satisfied. All relationships are version dependant, both in
depender and dependee packages. The corresponding meta-
model is shown in Fig. 18.

Before specifying the abstract syntax for CUDF doc-
uments, some preliminary definitions are needed. Assum-
ing some type for package IDs (usually character strings),
version numbers are defined as natural numbers, version
comparators are defined as relations between pairs of ver-
sion numbers, and features are redefined as (PackageID ,

Version) pairs:

[PID] [Abstract type for package IDs]

Version== N [Versions are natural numbers]

Comparator==Version ↔ Version [Version comparator]

Feature ::= package〈〈PID × Version〉〉 [Features are]

[packages in CUDF]

Having defined previous concepts, a CUDF model can be
defined as a set of package relationships:

Model ::= CUDF 〈〈 FRelationship 〉〉

Fig. 17 Sample CUDF document fragment
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Fig. 18 CUDF metamodel

Relationships, which can be conflicts, conjunctive depen-
dencies, or disjunctive dependencies, are defined over con-
straints as follows:

Relationship ::= conflict 〈〈 Constraint 〉〉
| conjunctiveDependency 〈〈 F1Constraint 〉〉
| disjunctiveDependency 〈〈 F1Constraint 〉〉

Finally, constraints are defined as 5-tuples (p, v , q , k , θ),
where p and q are the identifiers of the depender and
dependee packages, respectively, v and k are literal version
values, and θ is a comparison operator.

Constraint ::= constraint 〈〈
PID × Version × PID × Version × Comparator 〉〉

For example, a constraint such as (arduino, 2, JDK , 6,≥)
in a conjunctive dependency indicates that version 2 of the
arduino package depends on the JDK package version 6 or
higher.

Appendix 3: Theorem proofs

This appendix contains the proof of theorems included in
Sect. 3.

Proof of theorem 1 (the number of products of a void SPL
is 0)

This theorem is proved by the substitution of void and N
by their definitions:

∀spl : SPL • void spl ⇔ N spl = 0 [Theorem 1]

∀spl : SPL • ( Πspl = ∅ ) ⇔
( #Πspl = 0 ) [void & N definitions]

∀spl : SPL • ( #Πspl = #∅ ) ⇔
( #Πspl = 0 ) [Apply # in first term]

Since #∅ = 0 by definition, the theorem is proved. ��
Proof of theorem 2 (there not exists any valid configura-
tion for a void SPL)

This theorem is proved by the substitution of ≺c by its
definition:

∀spl : SPL • void spl ⇒ [Theorem 2]

� c : Configuration • c ≺c spl

∀spl : SPL • void spl ⇒ [≺c definition]

� c : Configuration •
( selected c ∪ removed c ) ⊆ spl .features ∧
∃ p : Πspl • p � c [False if void spl]

Since spl is void, by definition Πspl is empty and there-
fore no valid product with respect to any configuration
exists. ��
Proof of theorem 3 (any filtering on a void SPL results in
an empty set of products)

This theorem is proved by the substitution of Πσ by its
definition:

∀spl : SPL; c : Configuration • [Theorem 3]

void spl ⇒ Πσ( spl , c ) = ∅

∀spl : SPL; c : Configuration • [Πσ definition]

void spl ⇒ { p : Πspl | p � c } = ∅

Since spl is void, by definition Πspl is empty and
therefore {p : Π spl | p � c } is also empty for any c.

��
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Proof of theorem 4 (any pair of void SPLs are equivalent)
This theorem is proved by the substitution of ≡ by its

definition:

∀spl1, spl2 : SPL • [Theorem 4]

( void spl1 ∧ void spl2 ) ⇒ spl1 ≡ spl2

∀spl1, spl2 : SPL • [≡ definition]

( void spl1 ∧ void spl2 ) ⇒ Πspl1 = Πspl2

Since spl1 and spl2 are void, by definition Πspl1 and
Πspl2 are empty and therefore equal. ��

Proof of theorem 5 (the set of core features of a void SPL
is empty)

This theorem is proved by the substitution of ΦC by its
definition:

∀spl : SPL • void spl ⇒ ΦC spl = ∅ [Theorem 5]

∀spl : SPL • void spl ⇒ ∩Πspl = ∅ [ΦC definition ]

Since spl is void, by definition Πspl is empty and there-
fore ∩Πspl is also empty. ��

Proof of theorem 6 (all features of a void SPL are dead)
This theorem is proved by the substitution of ΦD by its

definition:

∀spl : SPL • void spl ⇒ [Theorem 6]

ΦD spl = spl .features

∀spl : SPL • void spl ⇒ [ΦD definition]

( spl .features \ ∪Πspl ) = spl .features

Since spl is void, by definition Πspl is empty and there-
fore ∪Πspl is also empty. ��

Proof of theorem 7 (the set of variant features of a void
SPL is empty)

This theorem is proved by the substitution of ΦV by its
definition:

∀spl : SPL • void spl ⇒ ΦV spl = ∅ [Theorem 7]

∀spl : SPL • void spl ⇒ [ΦV definition]

( spl .features \ ΦC spl \ ΦDspl ) = ∅

∀spl : SPL • void spl ⇒ [Th. 5 & 6]

( spl .features \ ∅ \ spl .features ) = ∅

We know by Theorems 5 and 6 that the set of core fea-
tures of a void SPL is empty and that all its features are dead.
Substituting in the subtraction expression of the three sets,
the theorem is proved. ��

Proof of theorem 8 (the core, variant and dead features of
an SPL partition its features)

In order to prove this theorem, first we substitute the
partitions expression by its definition, and then, the four
resulting lemmas are proved:

∀spl : SPL • [Theorem 8]

〈 ΦC spl , ΦV spl , ΦD spl 〉 partitions spl .features

∀spl : SPL • [partitions definition]

ΦC spl ∩ ΦV spl = ∅ ∧ [Lemma 1]

ΦC spl ∩ ΦD spl = ∅ ∧ [Lemma 2]

ΦV spl ∩ ΦD spl = ∅ ∧ [Lemma 3]

spl .features = ΦC spl ∪ ΦV spl ∪ ΦD spl [ Lemma 4 ]

��

Lemma 1 (core and variant features are disjoint)
This lemma is proved by the substitution of ΦV by its

definition:

∀spl : SPL • ΦC spl ∩ ΦV spl = ∅ [Lemma 1]

∀spl : SPL • ΦC spl ∩ [ΦV definition]

( spl .features \ ΦC spl \ ΦDspl ) = ∅

ΦC spl is subtracted from spl .features in the right-hand
side of the intersection expression; therefore, the intersec-
tion is empty.

Lemma 2 (core and dead features are disjoint)
This lemma is proved by the substitution of ΦC and ΦD

by their definitions:

∀spl : SPL • ΦC spl ∩ ΦDspl = ∅ [Lemma 2]

∀spl : SPL • ( ∩ Πspl ) ∩ [ΦC , ΦD defs]

( spl .features \ ∪ Πspl ) = ∅

Since the distributed intersection of a set of sets is always
a subset of the distributed union of the same set of sets, i.e.,
(∩Πspl ) ⊆ (∪Πspl ), the set difference (spl .features \
∪ Πspl ) does not contain any feature in ( ∩ Πspl ), and
therefore, the result of the intersection is empty.
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Lemma 3 (variant and dead features are disjoint)
This lemma is proved by the substitution of ΦV by its

definition:

∀spl : SPL • ΦV spl ∩ ΦDspl = ∅ [Lemma 3]

∀spl : SPL • [ΦV definition]

( spl .features \ ΦC spl \ ΦDspl ) ∩ ΦDspl = ∅

ΦDspl is subtracted from spl .features in the left-hand
side of the intersection expression; therefore, the intersec-
tion is empty.

Lemma 4 (the core, variant and dead features are all the
features)

This lemma is proved by the substitution of ΦV by their
definition:

∀spl : SPL • spl .features = [Lemma 4]

ΦC spl ∪ ΦV spl ∪ ΦD spl

∀spl : SPL • spl .features = [ΦV definition]

ΦC spl ∪ ( spl .features \ ΦC spl \ ΦDspl ) ∪ ΦD spl

Subtracting and adding the same set to another set leave
the latter unmodified, i.e., (X \ Y ) ∪ Y = X . In the union
expression, ΦC spl and ΦDspl are subtracted and added to
spl .features , resulting in spl .features and therefore making
both sides of the equality expression the same.

Once Lemmas 1, 2, 3, and 4 are proved, Theorem 8 gets
proved too.

Proof of theorem 9 (the set of unique features of a void
SPL is empty)

This theorem is proved by the substitution of ΦU by its
definition:

∀spl : SPL • void spl ⇒ ΦU spl = ∅ [Theorem 9]

∀spl : SPL • void spl ⇒ [ΦU definition]

{ fu : spl .features | ∃1 p : Πspl • fu ∈ p } = ∅

Since spl is void, by definition Πspl is empty, and there-
fore, (∃1 p : Π spl • fu ∈ p) is false, making ΦU spl
empty. ��
Proof of theorems 10 & 11 (in SPLs with more than one
product, unique features are variant features & in SPLs with
only one product, unique features are core features)

These theorems are proved together using the definition
of ΦV :

∀spl : SPL • [Theorem 10]

N spl > 1 ⇒ ΦU spl ⊆ ΦV spl

∀spl : SPL • [Theorem 11]

N spl = 1 ⇒ ΦU spl = ΦC spl

Considering the definition of ΦV as ( spl .features \
ΦC spl \ ΦD spl ), the definition of set subtraction implies
that variant features cannot be neither core nor dead features,
i.e.:

∀spl : SPL; f : ΦV spl • f /∈ ΦC spl ∧ f /∈ ΦD spl

On the other hand, we know that unique features cannot
be dead by definition, i.e.:

∀spl : SPL; f : ΦU spl • f /∈ ΦD spl

Since we know by Theorem 8 that core, variant and dead
features form a partition over the set of features of an SPL,
unique features must then be core or variant.

∀spl : SPL; f : ΦU spl • f ∈ ΦC spl ∨ f ∈ ΦV spl

If a unique feature is core, that means that is present in all
products. The only way of being present only in one product
(unique) and in all products (core) at the same time is when
there is only one product in the SPL.

∀spl : SPL; f : ΦU spl •
N spl = 1 ⇔ f ∈ ΦC spl ∧ f /∈ ΦV spl

∀spl : SPL; f : ΦU spl •
N spl > 1 ⇔ f /∈ ΦC spl ∧ f ∈ ΦV spl

By elimination, if there are more than one product in an
SPL, unique features cannot be core and must therefore be
variant. ��
Proof of theorem 12 (the core features, if any, are always
one of the atomic sets)

This theorem is proved by the substitution of ΦA and Φ0
A

by their definitions:

∀spl : SPL • ΦC spl �= ∅ ⇒ [Theorem 12]

ΦC spl ∈ ΦA spl

∀spl : SPL • ΦC spl �= ∅ ⇒ [ΦA definition]

( ΦC spl ∈ Φ0
Aspl ) ∧

maximal( ΦC spl ,Φ0
Aspl )

∀spl : SPL • ΦC spl �= ∅ ⇒ [Φ0

A definition]

( ∀p : Π spl • ΦC spl ⊆ p ∨ ΦC spl ∩ p = ∅ ) ∧
maximal( ΦC spl ,Φ0

Aspl )

Since core features are included in all products, (ΦC spl ⊆
p ) is true for all products, and therefore, core features are
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potential atomic sets. On the other hand, they are maximal
by definition (ΦC spl = ∩Πspl ), i.e., if a bigger potential
atomic set existed, the core features would not be the core
features but a proper subset of themselves. ��
Proof of theorem 13 (the dead features, if any, are always
one of the atomic sets)

This theorem is proved by the substitution of ΦA and Φ0
A

by their definitions:

∀spl : SPL • ΦD spl �= ∅ ⇒ [Theorem 13]

ΦDspl ∈ ΦA spl

∀spl : SPL • ΦD spl �= ∅ ⇒ [ΦA definition]

( ΦDspl ∈ Φ0
Aspl ) ∧

maximal( ΦDspl ,Φ
0
Aspl )

∀spl : SPL • ΦD spl �= ∅ ⇒ [Φ0

A definition]

( ∀p : Π spl • ΦDspl ⊆ p ∨ ΦDspl ∩ p = ∅ ) ∧
maximal( ΦDspl ,Φ

0
Aspl )

Since dead features are not included in any product,
(ΦDspl ∩ p = ∅ ) is true for all products, and therefore,
dead features are potential atomic sets. On the other hand,
they are maximal by definition (ΦDspl = spl .features \
∪Πspl ), i.e., if a bigger potential atomic set existed, the
dead features would not be the dead features but a proper
subset of themselves. ��
Proof of theorem 14 (void SPLs only have one atomic set,
its features)

This theorem is proved by applying the results of Theo-
rems 6 and 13:

∀spl : SPL • void spl ⇒ [Theorem 14]

ΦA spl = { spl .features }

We know by theorems 6 and 13 that all the features of
a void SPL are dead and that dead features are always an
atomic set:

∀spl : SPL • void spl ⇒ [Theorem 6]

ΦD spl = spl .features

∀spl : SPL • ΦD spl �= ∅ ⇒ [Theorem 13]

ΦDspl ∈ ΦA spl

Since spl .features is not empty by definition, we can
conclude that in void SPLs, spl .features ∈ ΦA spl . Obvi-
ously, if spl .features is an atomic set, no other atomic sets
can exist. ��

Proof of theorem 15 (the total variability of a void SPL is
0)

This theorem is proved by the substitution of V by its
definition:

∀spl : SPL • void spl ⇒ [Theorem 15]

V spl = 0

∀spl : SPL • void spl ⇒ [V definition]

N spl

2#spl.features − 1
= 0

Since spl is void, we know by theorem 1 that N spl = 0.
Therefore, V spl = 0. ��
Proof of theorem 16 (the partial variability of a void SPL
is 0)

This theorem is proved by applying the results of theo-
rem 7:

∀spl : SPL • void spl ⇒ Vρ spl = 0 [Theorem 16]

Since spl is void, we know by theorem 7 that ΦV spl =
0.

∀spl : SPL • void spl ⇒ ΦV spl = ∅ [Theorem 7]

Because of the definition of Vρ (see Sect. 3.5.2), ΦV spl
= 0 implies that Vρ spl = 0. ��
Proof of theorem 17 (The old homogeneity of a void SPL
is 100 %)

This theorem is proved by the substitution of Hold by its
definition:

∀spl : SPL • void spl ⇒ [Theorem 17]

Hold spl = 100 %

∀spl : SPL • void spl ⇒ [Hold definition]

1 − #(ΦU spl)
#spl .features

= 100 %

Since spl is void, we know by theorem 9 that ΦU spl =
∅. Therefore, Hold spl = 100 %. ��
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Proof of theorem 18 (The new homogeneity of a void SPL
is 0 %)

This theorem is proved by the substitution of H by its
definition:

∀spl : SPL • void spl ⇒ [Theorem 18]

H spl = 0%

∀spl : SPL • void spl ⇒ [H definition]
∑

fi ∈ spl.features

C( spl , ({fi}, ∅) )

#spl .features
= 0%

Because of the definition of C (see Sect. 3.5.1), the com-
monality of a void SPL is always 0. Therefore, Hspl =
0 %. ��

Appendix 4: Prolog code of the reference imple-
mentation

This appendix contains the translation guidelines applied
to the translation of the Z specification into Prolog, and
an example of use of the Prolog reference implementation,
which can be downloaded from http://www.isa.us.es/flame,
together with the 20,000 metamorphic tests.

Z-to-Prolog translation guidelines

The main guidelines followed during the manual translation
of the Z specification into Prolog are described below.

– Z sets are represented as Prolog lists without duplicates,
something common in the animation of Z specifications
in Prolog [35,73]. A small toolkit for those set oper-
ations not present in the SWI Prolog distribution was
developed for that purpose.

– The SPL schema type was represented as the functor
spl(F,M), where F is the SPL feature set and M is the
SPL characteristic model. Functors are the usual way of
representing compound objects in Prolog (see [20] for
details).

– The Configuration type is represented as the functor
configuration(S,R), where S is the set of selected
features and R is the set of removed features.

– The ≺≺ relation (is-instance-of ) is represented as the
instance of(P,M) predicate, where P is a product and
M is a characteristic model.

– The Φ function is represented as the features(M,F)

predicate, where M is a characteristic model and F is the
set of features used in the model.

– As a general pattern, when some elements in a set must
be selected by satisfying a predicate, i.e.:

ys = { x : xs | P(x ) } [ the set of all x ’s in xs satisfying P ]

this is translated into Prolog using the standard predicate
findall(X,G,L) [20], which returns a list L with all
the values of X that satisfy the, possibly compound, goal
G. In this pattern, the goal is formed by the conjunction
of the membership of X to X S and the satisfaction of
predicate P on X:

findall( X, ( member( X, X_S ), P( X ) ), Y_S )

– Another pattern was applied for translating expressions
using the universal quantifier over the elements of a set,
i.e.:

∀x : xs • P(x ) [true if all x ’s in xs satisfy P]

This is translated into Prolog using the common pred-
icate forall (C,P), which succeeds if all solutions of
C satisfy predicate P. In this case, the condition is the
membership of X to X S, and the predicate is any predi-
cate P on X:

forall( member( X, X_S ), P( X ))

Sample use of the FLAME framework

If an SPL designer would like to use FLAME to analyze her
FMs, she should represent them in the Prolog format for the
FLAME abstract syntax. For example,
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% SPL instances: spl_db( ID, spl( Features, Model ) )

spl_db( survey_spl,
spl(

[
mobile_phone, calls, gps, screen, basic,
color, high_resolution, media, camera, mp3

],
bfm( feature( mobile_phone,

[
mandatory( feature( calls, [] ) ),
optional( feature( gps, [] ) ),
mandatory( feature( screen,

[ only_one( [
feature( basic, [] ),
feature( color, [] ),
feature( high_resolution, [] )

] )
]

) ),
optional( feature( media,

[ one_or_more( [
feature( camera, [] ),
feature( mp3, [] )

] )
]

) )
] ),
[

excludes( gps, basic ),
requires( camera, high_resolution ),
requires( mp3, mp3 )

]
)

)
).

Then, she could use a predicate like this for analyzing her
SPL:

% Sample usage from Prolog prompt: analyze( survey_spl ).

analyze( SPL_ID ) :-
spl_db( SPL_ID, SPL ),

write( ’Checking ’ ), write( SPL_ID ), nl,
check_spl( SPL ),

write( ’Products of ’ ), write( SPL_ID ), nl,
products_verbose( SPL, PRDS ),

nop( SPL, NOP ),
write( ’Number of products = ’ ), write( NOP ), nl,

core_features( SPL, CORE ),
write( ’Core features = ’ ), write( CORE ), nl,

variant_features( SPL, VARIANT ),
write( ’Variant features = ’ ), write( VARIANT ), nl,

dead_features( SPL, DEAD ),
write( ’Dead features = ’ ), write( DEAD ), nl,

unique_features( SPL, UNIQUE ),
write( ’Unique features = ’ ), write( UNIQUE ), nl,

atomic_sets( SPL, ATOMS ),
write( ’Atomic sets: ’), write( ATOMS ), nl,

variability( SPL, V ),
write( ’Variability = ’ ),
format( ’˜2f%’, V * 100 ), nl,

partial_variability( SPL, PV ),
write( ’Partial variability = ’ ),
format( ’˜2f%’, PV * 100 ), nl,

homogeneity_old( SPL, H_OLD ),
write( ’(old) Homogeneity = ’ ),
format( ’˜2f%’, H_OLD * 100 ), nl,

homogeneity( SPL, H ),
write( ’(new) Homogeneity = ’ ),
format( ’˜2f%’, H * 100 ), nl,

!, fail.

That would produce the output in Fig. 19 after calling
analyze( survey spl ) from the Prolog prompt.

Fig. 19 Output of the
execution of the analysis of a
sample SPL in the FLAME
reference implementation
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